{ "id": "1103.5168", "version": "v1", "published": "2011-03-26T21:51:46.000Z", "updated": "2011-03-26T21:51:46.000Z", "title": "About sum rules for Gould-Hopper polynomials", "authors": [ "O. Lévêque", "C. Vignat" ], "categories": [ "math.PR" ], "abstract": "We show that various identities from [1] and [3] involving Gould-Hopper polynomials can be deduced from the real but also complex orthogonal invariance of multivariate Gaussian distributions. We also deduce from this principle a useful stochastic representation for the inner product of two non-centered Gaussian vectors and two non-centered Gaussian matrices. [1] J. Daboul, S. S. Mizrahi, O(N) symmetries, sum rules for generalized Hermite polynomials and squeezed state, J. Phys. A: Math. Gen. 38 (2005) 427-448 [3] P. Graczyk, A. Nowak, A composition formula for squares of Hermite polynomials and its generalizations, C. R. Acad. Sci. Paris, Ser 1 338 (2004)", "revisions": [ { "version": "v1", "updated": "2011-03-26T21:51:46.000Z" } ], "analyses": { "keywords": [ "gould-hopper polynomials", "sum rules", "multivariate gaussian distributions", "complex orthogonal invariance", "inner product" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.5168L" } } }