{ "id": "1103.4451", "version": "v2", "published": "2011-03-23T06:11:14.000Z", "updated": "2011-05-23T13:45:36.000Z", "title": "On the symmetry of the Liouville function in almost all short intervals", "authors": [ "Giovanni Coppola" ], "comment": "The paper has been withdrawn by the Author because of a crucial error in Lemma 2, due to the wrong Lemma A", "categories": [ "math.NT" ], "abstract": "We prove a kind of \"almost all symmetry\" result for the Liouville function $\\lambda(n):=(-1)^{\\Omega(n)}$, giving non-trivial bounds for its \"symmetry integral\", say $I_{\\lambda}(N,h)$ : we get $I_{\\lambda}(N,h)\\ll NhL^3+Nh^{21/20}$, with $L:=\\log N$. We also give similar results for other related arithmetic functions, like the M\\\"{o}bius function $\\mu(n)$ ($=\\lambda(n)$ on square-free $n$).", "revisions": [ { "version": "v2", "updated": "2011-05-23T13:45:36.000Z" } ], "analyses": { "subjects": [ "11N37", "11N25" ], "keywords": [ "liouville function", "short intervals", "symmetry integral", "similar results", "related arithmetic functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.4451C" } } }