{ "id": "1103.4424", "version": "v3", "published": "2011-03-23T00:21:37.000Z", "updated": "2011-06-09T04:04:49.000Z", "title": "Every countably infinite group is almost Ornstein", "authors": [ "Lewis Bowen" ], "comment": "Comments welcome!", "categories": [ "math.DS", "math.PR" ], "abstract": "We say that a countable discrete group $G$ is {\\em almost Ornstein} if for every pair of standard non-two-atom probability spaces $(K,\\kappa), (L,\\lambda)$ with the same Shannon entropy, the Bernoulli shifts $G \\cc (K^G,\\kappa^G)$ and $G \\cc (L^G,\\lambda^G)$ are isomorphic.", "revisions": [ { "version": "v3", "updated": "2011-06-09T04:04:49.000Z" } ], "analyses": { "keywords": [ "countably infinite group", "standard non-two-atom probability spaces", "shannon entropy", "bernoulli shifts", "countable discrete group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.4424B" } } }