{ "id": "1103.4014", "version": "v1", "published": "2011-03-21T14:02:31.000Z", "updated": "2011-03-21T14:02:31.000Z", "title": "Endpoint estimates and global existence for the nonlinear Dirac equation with potential", "authors": [ "Federico Cacciafesta", "Piero D'Ancona" ], "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We prove endpoint estimates with angular regularity for the wave and Dirac equations perturbed with a small potential. The estimates are applied to prove global existence for the cubic Dirac equation perturbed with a small potential, for small initial $H^{1}$ data with additional angular regularity. This implies in particular global existence in the critical energy space $H^{1}$ for small radial data.", "revisions": [ { "version": "v1", "updated": "2011-03-21T14:02:31.000Z" } ], "analyses": { "keywords": [ "global existence", "nonlinear dirac equation", "endpoint estimates", "small potential", "small radial data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.4014C" } } }