{ "id": "1103.3635", "version": "v1", "published": "2011-03-18T14:42:40.000Z", "updated": "2011-03-18T14:42:40.000Z", "title": "On a conjecture of polynomials with prescribed range", "authors": [ "Muratović-Ribić", "Qiang Wang" ], "categories": [ "math.CO", "math.NT" ], "abstract": "We show that, for any integer $\\ell$ with $q-\\sqrt{p} -1 \\leq \\ell < q-3$ where $q=p^n$ and $p>9$, there exists a multiset $M$ satisfying that $0\\in M$ has the highest multiplicity $\\ell$ and $\\sum_{b\\in M} b =0$ such that every polynomial over finite fields $\\fq$ with the prescribed range $M$ has degree greater than $\\ell$. This implies that Conjecture 5.1. in \\cite{gac} is false over finite field $\\fq$ for $p > 9$ and $k:=q-\\ell -1 \\geq 3$.", "revisions": [ { "version": "v1", "updated": "2011-03-18T14:42:40.000Z" } ], "analyses": { "keywords": [ "prescribed range", "polynomial", "conjecture", "finite field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.3635M" } } }