{ "id": "1103.2419", "version": "v1", "published": "2011-03-12T03:56:44.000Z", "updated": "2011-03-12T03:56:44.000Z", "title": "Roman domination number of Generalized Petersen Graphs P(n,2)", "authors": [ "Haoli Wang", "Xirong Xu", "Yuansheng Yang", "Chunnian Ji" ], "comment": "9 pages", "categories": [ "math.CO" ], "abstract": "A $Roman\\ domination\\ function$ on a graph $G=(V, E)$ is a function $f:V(G)\\rightarrow\\{0,1,2\\}$ satisfying the condition that every vertex $u$ with $f(u)=0$ is adjacent to at least one vertex $v$ with $f(v)=2$. The $weight$ of a Roman domination function $f$ is the value $f(V(G))=\\sum_{u\\in V(G)}f(u)$. The minimum weight of a Roman dominating function on a graph $G$ is called the $Roman\\ domination\\ number$ of $G$, denoted by $\\gamma_{R}(G)$. In this paper, we study the {\\it Roman domination number} of generalized Petersen graphs P(n,2) and prove that $\\gamma_R(P(n,2)) = \\lceil {\\frac{8n}{7}}\\rceil (n \\geq 5)$.", "revisions": [ { "version": "v1", "updated": "2011-03-12T03:56:44.000Z" } ], "analyses": { "keywords": [ "roman domination number", "generalized petersen graphs", "roman domination function", "minimum weight", "roman dominating function" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.2419W" } } }