{ "id": "1103.2204", "version": "v1", "published": "2011-03-11T07:37:48.000Z", "updated": "2011-03-11T07:37:48.000Z", "title": "On the universal sl_2 invariant of boundary bottom tangles", "authors": [ "Sakie Suzuki" ], "categories": [ "math.GT", "math.QA" ], "abstract": "The universal sl_2 invariant of bottom tangles has a universality property for the colored Jones polynomial of links. Habiro conjectured that the universal sl_2 invariant of boundary bottom tangles takes values in certain subalgebras of the completed tensor powers of the quantized enveloping algebra U_h(sl_2) of the Lie algebra sl_2. In the present paper, we prove an improved version of Habiro's conjecture. As an application, we prove a divisibility property of the colored Jones polynomial of boundary links.", "revisions": [ { "version": "v1", "updated": "2011-03-11T07:37:48.000Z" } ], "analyses": { "subjects": [ "57M27", "57M25" ], "keywords": [ "colored jones polynomial", "boundary links", "divisibility property", "universality property", "habiros conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.2204S" } } }