{ "id": "1103.2002", "version": "v1", "published": "2011-03-10T11:55:42.000Z", "updated": "2011-03-10T11:55:42.000Z", "title": "A local limit theorem for triple connections in subcritical Bernoulli percolation", "authors": [ "Massimo Campanino", "Michele Gianfelice" ], "comment": "31 pages", "journal": "Probab. Theory Relat. Fields (2009) n.143, pp.353-378", "doi": "10.1007/s00440-007-0129-3", "categories": [ "math.PR", "cond-mat.stat-mech", "math-ph", "math.MP" ], "abstract": "We prove a local limit theorem for the probability of a site to be connected by disjoint paths to three points in subcritical Bernoulli percolation on $\\mathbb{Z}^{d},\\,d\\geq2$ in the limit where their distances tend to infinity.", "revisions": [ { "version": "v1", "updated": "2011-03-10T11:55:42.000Z" } ], "analyses": { "subjects": [ "60F15", "60K35", "82B43" ], "keywords": [ "local limit theorem", "subcritical bernoulli percolation", "triple connections", "distances tend", "disjoint paths" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.2002C" } } }