{ "id": "1103.1721", "version": "v2", "published": "2011-03-09T07:31:11.000Z", "updated": "2014-02-13T12:24:47.000Z", "title": "Invariant differential operators on a class of multiplicity free spaces", "authors": [ "Hubert Rubenthaler" ], "comment": "31 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "If $(G,V)$ is a multiplity free space with a one dimensional quotient we give generators and relations for the non-commutative algebra $D(V)^{G'}$ of invariant differential operators under the semi-simple part $G'$ of the reductive group $G$. More precisely we show that $D(V)^{G'}$ is the quotient of a Smith algebra by a completely described two-sided ideal.", "revisions": [ { "version": "v2", "updated": "2014-02-13T12:24:47.000Z" } ], "analyses": { "keywords": [ "invariant differential operators", "multiplicity free spaces", "multiplity free space", "smith algebra", "dimensional quotient" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.1721R" } } }