{ "id": "1103.1241", "version": "v2", "published": "2011-03-07T11:13:56.000Z", "updated": "2011-03-15T18:30:58.000Z", "title": "The Ringel--Hall Lie algebra of a spherical object", "authors": [ "Changjian Fu", "Dong Yang" ], "comment": "26pages", "doi": "10.1112/jlms/jdr064", "categories": [ "math.RT", "math.CT", "math.QA" ], "abstract": "For an integer $w$, let $\\cs_w$ be the algebraic triangulated category generated by a $w$-spherical object. We determine the Picard group of $\\cs_w$ and show that each orbit category of $\\cs_w$ is triangulated and is triangle equivalent to a certain orbit category of the bounded derived category of a standard tube. When $n=2$, the orbit category $\\cs_w/\\Sigma^2$ is 2-periodic triangulated, and we characterize the associated Ringel--Hall Lie algebra in the sense of Peng and Xiao.", "revisions": [ { "version": "v2", "updated": "2011-03-15T18:30:58.000Z" } ], "analyses": { "subjects": [ "18E30", "16E35", "16E45", "17B99" ], "keywords": [ "spherical object", "orbit category", "associated ringel-hall lie algebra", "triangle equivalent", "picard group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.1241F" } } }