{ "id": "1103.0935", "version": "v3", "published": "2011-03-04T16:04:18.000Z", "updated": "2013-07-08T08:49:17.000Z", "title": "Suprema of Lévy processes", "authors": [ "Mateusz Kwaśnicki", "Jacek Małecki", "Michał Ryznar" ], "comment": "Published in at http://dx.doi.org/10.1214/11-AOP719 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2013, Vol. 41, No. 3B, 2047-2065", "doi": "10.1214/11-AOP719", "categories": [ "math.PR" ], "abstract": "In this paper we study the supremum functional $M_t=\\sup_{0\\le s\\le t}X_s$, where $X_t$, $t\\ge0$, is a one-dimensional L\\'{e}vy process. Under very mild assumptions we provide a simple, uniform estimate of the cumulative distribution function of $M_t$. In the symmetric case we find an integral representation of the Laplace transform of the distribution of $M_t$ if the L\\'{e}vy-Khintchin exponent of the process increases on $(0,\\infty)$.", "revisions": [ { "version": "v3", "updated": "2013-07-08T08:49:17.000Z" } ], "analyses": { "keywords": [ "lévy processes", "uniform estimate", "supremum functional", "cumulative distribution function", "mild assumptions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.0935K" } } }