{ "id": "1103.0804", "version": "v1", "published": "2011-03-03T23:48:57.000Z", "updated": "2011-03-03T23:48:57.000Z", "title": "Equivariant extension properties of coset spaces of locally compact groups and approximate slices", "authors": [ "Sergey A. Antonyan" ], "categories": [ "math.GN", "math.GR", "math.GT" ], "abstract": "We prove that for a compact subgroup $H$ of a locally compact Hausdorff group $G$, the following properties are mutually equivalent: (1) $G/H$ is a manifold, (2) $G/H$ is finite-dimensional and locally connected, (3) $G/H$ is locally contractible, (4) $G/H$ is an ANE for paracompact spaces, (5) $G/H$ is a metrizable $G$-ANE for paracompact proper $G$-spaces having a paracompact orbit space. A new version of the Approximate slice theorem is also proven in the light of these results.", "revisions": [ { "version": "v1", "updated": "2011-03-03T23:48:57.000Z" } ], "analyses": { "subjects": [ "22D05", "22F05", "54C55", "54H15" ], "keywords": [ "equivariant extension properties", "locally compact groups", "coset spaces", "locally compact hausdorff group", "paracompact orbit space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.0804A" } } }