{ "id": "1103.0616", "version": "v1", "published": "2011-03-03T08:15:22.000Z", "updated": "2011-03-03T08:15:22.000Z", "title": "Estimates at or beyond endpoint in harmonic analysis: Bochner-Riesz means and spherical means", "authors": [ "Shunchao Long" ], "comment": "50 pages", "categories": [ "math.CA", "math.AP", "math.FA" ], "abstract": "We introduce some new functions spaces to investigate some problems at or beyond endpoint. First, we prove that Bochner-Riesz means $B_R^\\lambda$ are bounded from some subspaces of $L^p_{|x|^\\alpha}$ to $L^p_{|x|^\\alpha}$ for $ \\frac{n-1}{2(n+1)}<\\lambda \\leq \\frac{n-1}{2}, 0 < p\\leq p'_\\lambda=\\frac{2n}{n+1+2\\lambda}, n(\\frac{p}{p_\\lambda}-1)< \\alpha