{ "id": "1103.0314", "version": "v2", "published": "2011-03-01T23:32:15.000Z", "updated": "2013-09-02T17:29:57.000Z", "title": "Isoparametric hypersurfaces and metrics of constant scalar curvature", "authors": [ "Guillermo Henry", "Jimmy Petean" ], "comment": "20 pages, to appear in The Assian Journal of Mathematics", "categories": [ "math.DG" ], "abstract": "We showed the existence of non-radial solutions of the equation $\\Delta u -\\lambda u + \\lambda u^q =0$ on the round sphere $S^m$, for $q<2m/(m-2)$, and study the number of such solutions in terms of $\\lambda$. We show that for any isoparametric hypersurface $M\\subset S^m$ there are solutions such that $M$ is a regular level set (and the number of such solutions increases with $\\lambda$). We also show similar results for isoparametric hypersurfaces in general Riemannian manifolds. These solutions give multiplicity results for metrics of constant scalar curvature on conformal classes of Riemannian products.", "revisions": [ { "version": "v2", "updated": "2013-09-02T17:29:57.000Z" } ], "analyses": { "subjects": [ "53C21" ], "keywords": [ "constant scalar curvature", "isoparametric hypersurface", "general riemannian manifolds", "regular level set", "round sphere" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.0314H" } } }