{ "id": "1103.0229", "version": "v2", "published": "2011-03-01T17:23:00.000Z", "updated": "2011-10-13T10:04:52.000Z", "title": "Convergence of solutions to the $p$-Laplace evolution equation as $p$ goes to 1", "authors": [ "Jonas M. Tölle" ], "comment": "11 pp", "categories": [ "math.AP", "math.OC" ], "abstract": "We prove that the set of solutions to the parabolic singular $p$-Laplace equation with Dirichlet boundary conditions on a bounded Lipschitz domain $\\Omega$ for all space dimensions is continuous in the parameter $p\\in [1,+\\infty)$ and the initial data. The highly singular limit case p=1 is included. In particular, we show that the solutions $u_p$ converge strongly in $L^2(\\Omega)$, uniformly in time, to the solution $u_1$ of the parabolic 1-Laplace equation as $p\\to 1$.", "revisions": [ { "version": "v2", "updated": "2011-10-13T10:04:52.000Z" } ], "analyses": { "subjects": [ "35K67", "49J45" ], "keywords": [ "laplace evolution equation", "convergence", "dirichlet boundary conditions", "highly singular limit case", "space dimensions" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.0229T" } } }