{ "id": "1103.0067", "version": "v1", "published": "2011-03-01T02:18:36.000Z", "updated": "2011-03-01T02:18:36.000Z", "title": "Cycle-saturated graphs with minimum number of edges", "authors": [ "Zoltan Furedi", "Younjin Kim" ], "categories": [ "math.CO" ], "abstract": "A graph $G$ is called $H$-saturated if it does not contain any copy of $H$, but for any edge $e$ in the complement of $G$ the graph $G+e$ contains some $H$. The minimum size of an $n$-vertex $H$-saturated graph is denoted by $\\sat(n,H)$. We prove $$\\sat(n,C_k) = n + n/k + O((n/k^2) + k^2)$$ holds for all $n\\geq k\\geq 3$, where $C_k$ is a cycle with length $k$. We have a similar result for semi-saturated graphs $$\\ssat(n,C_k) = n + n/(2k) + O((n/k^2) + k).$$ We conjecture that our three constructions are optimal.", "revisions": [ { "version": "v1", "updated": "2011-03-01T02:18:36.000Z" } ], "analyses": { "keywords": [ "minimum number", "cycle-saturated graphs", "similar result", "complement", "semi-saturated graphs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.0067F" } } }