{ "id": "1102.5557", "version": "v1", "published": "2011-02-27T22:43:09.000Z", "updated": "2011-02-27T22:43:09.000Z", "title": "Periodicity of the spectrum of a finite union of intervals", "authors": [ "Mihail N. Kolountzakis" ], "comment": "4 pages", "categories": [ "math.CA" ], "abstract": "A set $\\Omega$, of Lebesgue measure 1, in the real line is called spectral if there is a set $\\Lambda$ of real numbers such that the exponential functions $e_\\lambda(x) = \\exp(2\\pi i \\lambda x)$ form a complete orthonormal system on $L^2(\\Omega)$. Such a set $\\Lambda$ is called a spectrum of $\\Omega$. In this note we present a simplified proof of the fact that any spectrum $\\Lambda$ of a set $\\Omega$ which is finite union of intervals must be periodic. The original proof is due to Bose and Madan.", "revisions": [ { "version": "v1", "updated": "2011-02-27T22:43:09.000Z" } ], "analyses": { "subjects": [ "42B99" ], "keywords": [ "finite union", "periodicity", "complete orthonormal system", "lebesgue measure", "real line" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.5557K" } } }