{ "id": "1102.5542", "version": "v1", "published": "2011-02-27T19:46:58.000Z", "updated": "2011-02-27T19:46:58.000Z", "title": "Inverse boundary value problems for the perturbed polyharmonic operator", "authors": [ "Katsiaryna Krupchyk", "Matti Lassas", "Gunther Uhlmann" ], "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We show that a first order perturbation $A(x)\\cdot D+q(x)$ of the polyharmonic operator $(-\\Delta)^m$, $m\\ge 2$, can be determined uniquely from the set of the Cauchy data for the perturbed polyharmonic operator on a bounded domain in $R^n$, $n\\ge 3$. Notice that the corresponding result does not hold in general when $m=1$.", "revisions": [ { "version": "v1", "updated": "2011-02-27T19:46:58.000Z" } ], "analyses": { "subjects": [ "35R30", "31B20", "31B30", "35J40" ], "keywords": [ "inverse boundary value problems", "perturbed polyharmonic operator", "first order perturbation", "cauchy data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.5542K" } } }