{ "id": "1102.5187", "version": "v1", "published": "2011-02-25T08:16:59.000Z", "updated": "2011-02-25T08:16:59.000Z", "title": "Quasifinite representations of a class of Block type Lie algebras $\\BB$", "authors": [ "Yucai Su", "Chunguang Xia", "Ying Xu" ], "comment": "LaTeX, 22 pages", "categories": [ "math.RT" ], "abstract": "Intrigued by a well-known theorem of Mathieu's on Harish-Chandra modules over the Virasoro algebra, we give an analogous result for a class of Block type Lie algebras $\\BB$, where the parameter $q$ is a nonzero complex number. We also classify quasifinite irreducible highest weight $\\BB$-modules and irreducible $\\BB$-modules of the intermediate series. In particular, we obtain that an irreducible $\\BB$-module of the intermediate series may be a nontrivial extension of a $\\Vir$-module of the intermediate series if $q$ is half of a negative integer, where $\\Vir$ is a subalgebra of $\\BB$ isomorphic to the Virasoro algebra.", "revisions": [ { "version": "v1", "updated": "2011-02-25T08:16:59.000Z" } ], "analyses": { "keywords": [ "block type lie algebras", "quasifinite representations", "intermediate series", "virasoro algebra", "nonzero complex number" ], "note": { "typesetting": "LaTeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.5187S" } } }