{ "id": "1102.5181", "version": "v1", "published": "2011-02-25T07:58:03.000Z", "updated": "2011-02-25T07:58:03.000Z", "title": "On the edge connectivity of direct products with dense graphs", "authors": [ "Wei Wang", "Zhidan Yan" ], "comment": "8 pages, submited to discrete math", "categories": [ "math.CO" ], "abstract": "Let $\\kappa'(G)$ be the edge connectivity of $G$ and $G\\times H$ the direct product of $G$ and $H$. Let $H$ be an arbitrary dense graph with minimal degree $\\delta(H)>|H|/2$. We prove that for any graph $G$, $\\kappa'(G\\times H)=\\textup{min}\\{2\\kappa'(G)e(H),\\delta(G)\\delta(H)\\}$, where $e(H)$ denotes the number of edges in $H$. In addition, the structure of minimum edge cuts is described. As an application, we present a necessary and sufficient condition for $G\\times K_n(n\\ge3)$ to be super edge connected.", "revisions": [ { "version": "v1", "updated": "2011-02-25T07:58:03.000Z" } ], "analyses": { "keywords": [ "edge connectivity", "direct product", "arbitrary dense graph", "minimum edge cuts", "minimal degree" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.5181W" } } }