{ "id": "1102.5175", "version": "v1", "published": "2011-02-25T07:16:30.000Z", "updated": "2011-02-25T07:16:30.000Z", "title": "Global stability for the multi-channel Gel'fand-Calderón inverse problem in two dimensions", "authors": [ "Matteo Santacesaria" ], "journal": "Bulletin des Sciences Math\\'ematiques 136, 7 (2012) 731-744", "doi": "10.1016/j.bulsci.2012.02.004", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We prove a global logarithmic stability estimate for the multi-channel Gel'fand-Calder\\'on inverse problem on a two-dimensional bounded domain, i.e. the inverse boundary value problem for the equation $-\\Delta \\psi + v\\, \\psi = 0$ on $D$, where $v$ is a smooth matrix-valued potential defined on a bounded planar domain $D$.", "revisions": [ { "version": "v1", "updated": "2011-02-25T07:16:30.000Z" } ], "analyses": { "keywords": [ "multi-channel gelfand-calderón inverse problem", "global stability", "multi-channel gelfand-calderon inverse problem", "dimensions", "global logarithmic stability estimate" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.5175S" } } }