{ "id": "1102.4834", "version": "v1", "published": "2011-02-22T03:45:07.000Z", "updated": "2011-02-22T03:45:07.000Z", "title": "The generalized Pillai equation $\\pm r a^x \\pm s b^y = c$", "authors": [ "Reese Scott", "Robert Styer" ], "comment": "This is an updated version (expanding the comment on values of exponents = 0) of the paper published in Journal of Number Theory, June 2011", "categories": [ "math.NT" ], "abstract": "In this paper we consider $N$, the number of solutions $(x,y,u,v)$ to the equation $ (-1)^u r a^x + (-1)^v s b^y = c$ in nonnegative integers $x, y$ and integers $u, v \\in \\{0,1\\}$, for given integers $a>1$, $b>1$, $c>0$, $r>0$ and $s>0$. We show that $N \\le 2$ when $\\gcd(ra, sb) =1$ and $\\min(x,y)>0$, except for a finite number of cases that can be found in a finite number of steps. For arbitrary $\\gcd(ra, sb)$ and $\\min(x,y) \\ge 0$, we show that when $(u,v) = (0,1)$ we have $N \\le 3$, with an infinite number of cases for which N=3.", "revisions": [ { "version": "v1", "updated": "2011-02-22T03:45:07.000Z" } ], "analyses": { "subjects": [ "11D61" ], "keywords": [ "generalized pillai equation", "infinite number", "nonnegative integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.4834S" } } }