{ "id": "1102.4833", "version": "v1", "published": "2011-02-22T03:18:42.000Z", "updated": "2011-02-22T03:18:42.000Z", "title": "The generalized Pillai equation $\\pm r a^x \\pm s b^y = c$, II", "authors": [ "Reese Scott", "Robert Styer" ], "categories": [ "math.NT" ], "abstract": "We consider $N$, the number of solutions $(x,y,u,v)$ to the equation $ (-1)^u r a^x + (-1)^v s b^y = c $ in nonnegative integers $x, y$ and integers $u, v \\in \\{0,1\\}$, for given integers $a>1$, $b>1$, $c>0$, $r>0$ and $s>0$. When $(ra,sb)=1$, we show that $N \\le 3$ except for a finite number of cases all of which satisfy $\\max(a,b,r,s, x,y) < 2 \\cdot 10^{15}$ for each solution; when $(a,b)>1$, we show that $N \\le 3$ except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of infinite families of cases giving N=3 solutions.", "revisions": [ { "version": "v1", "updated": "2011-02-22T03:18:42.000Z" } ], "analyses": { "subjects": [ "11D61" ], "keywords": [ "generalized pillai equation", "infinite families", "exceptional cases", "infinite number", "nonnegative integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.4833S" } } }