{ "id": "1102.4314", "version": "v1", "published": "2011-02-21T19:43:01.000Z", "updated": "2011-02-21T19:43:01.000Z", "title": "On the genus of curves in a Jacobian variety", "authors": [ "Valeria Ornella Marcucci" ], "comment": "16 pages", "categories": [ "math.AG" ], "abstract": "We prove that the geometric genus p of a curve in a very generic Jacobian of dimension g>3 satisfies either p=g or p>2g-3. This gives a positive answer to a conjecture of Naranjo and Pirola. For low values of g the second inequality can be further improved to p>2g-2.", "revisions": [ { "version": "v1", "updated": "2011-02-21T19:43:01.000Z" } ], "analyses": { "subjects": [ "14H40" ], "keywords": [ "jacobian variety", "geometric genus", "generic jacobian", "low values", "second inequality" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.4314O" } } }