{ "id": "1102.3995", "version": "v1", "published": "2011-02-19T15:58:42.000Z", "updated": "2011-02-19T15:58:42.000Z", "title": "Optimal estimates for harmonic functions in the unit ball", "authors": [ "David Kalaj", "Marijan Markovic" ], "comment": "9 pages", "categories": [ "math.AP" ], "abstract": "We find the sharp constants $C_p$ and the sharp functions $C_p=C_p(x)$ in the inequality $$|u(x)|\\leq \\frac{C_p}{(1-|x|^2)^{(n-1)/p}}\\|u\\|_{h^p(B^n)}, u\\in h^p(B^n), x\\in B^n,$$ in terms of Gauss hypergeometric and Euler functions. This extends and improves some results of Axler, Bourdon and Ramey (\\cite{ABR}), where they obtained similar results which are sharp only in the cases $p=2$ and $p=1$.", "revisions": [ { "version": "v1", "updated": "2011-02-19T15:58:42.000Z" } ], "analyses": { "subjects": [ "31A05" ], "keywords": [ "harmonic functions", "unit ball", "optimal estimates", "sharp functions", "sharp constants" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.3995K" } } }