{ "id": "1102.3517", "version": "v1", "published": "2011-02-17T07:52:41.000Z", "updated": "2011-02-17T07:52:41.000Z", "title": "On distribution of zeros of random polynomials in complex plane", "authors": [ "Ildar Ibragimov", "Dmitry Zaporozhets" ], "categories": [ "math.PR", "math.CV" ], "abstract": "Let $G_n(z)=\\xi_0+\\xi_1z+...+\\xi_n z^n$ be a random polynomial with i.i.d. coefficients (real or complex). We show that the arguments of the roots of $G_n(z)$ are uniformly distributed in $[0,2\\pi]$ asymptotically as $n\\to\\infty$. We also prove that the condition $\\E\\ln(1+|\\xi_0|)<\\infty$ is necessary and sufficient for the roots to asymptotically concentrate near the unit circumference.", "revisions": [ { "version": "v1", "updated": "2011-02-17T07:52:41.000Z" } ], "analyses": { "subjects": [ "26C10" ], "keywords": [ "random polynomial", "complex plane", "distribution", "unit circumference" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.3517I" } } }