{ "id": "1102.2171", "version": "v2", "published": "2011-02-10T16:58:37.000Z", "updated": "2011-06-03T20:55:28.000Z", "title": "CLTs and asymptotic variance of time-sampled Markov chains", "authors": [ "Krzysztof Latuszynski", "Gareth O. Roberts" ], "comment": "A small simulation illustrating theoretical results added", "categories": [ "math.PR", "stat.CO" ], "abstract": "For a Markov transition kernel $P$ and a probability distribution $ \\mu$ on nonnegative integers, a time-sampled Markov chain evolves according to the transition kernel $P_{\\mu} = \\sum_k \\mu(k)P^k.$ In this note we obtain CLT conditions for time-sampled Markov chains and derive a spectral formula for the asymptotic variance. Using these results we compare efficiency of Barker's and Metropolis algorithms in terms of asymptotic variance.", "revisions": [ { "version": "v2", "updated": "2011-06-03T20:55:28.000Z" } ], "analyses": { "keywords": [ "asymptotic variance", "markov transition kernel", "time-sampled markov chain evolves", "probability distribution", "clt conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.2171L" } } }