{ "id": "1102.2141", "version": "v1", "published": "2011-02-10T15:15:16.000Z", "updated": "2011-02-10T15:15:16.000Z", "title": "The Turán number of $F_{3,3}$", "authors": [ "Peter Keevash", "Dhruv Mubayi" ], "comment": "6 pages", "categories": [ "math.CO" ], "abstract": "Let $F_{3,3}$ be the 3-graph on 6 vertices, labelled abcxyz, and 10 edges, one of which is abc, and the other 9 of which are all triples that contain 1 vertex from abc and 2 vertices from xyz. We show that for all $n \\ge 6$, the maximum number of edges in an $F_{3,3}$-free 3-graph on $n$ vertices is $\\binom{n}{3} - \\binom{\\lfloor n/2 \\rfloor}{3} - \\binom{\\lceil n/2 \\rceil}{3}$. This sharpens results of Zhou and of the second author and R\\\"odl.", "revisions": [ { "version": "v1", "updated": "2011-02-10T15:15:16.000Z" } ], "analyses": { "keywords": [ "turán number", "maximum number", "sharpens results", "second author", "labelled abcxyz" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.2141K" } } }