{ "id": "1102.1541", "version": "v1", "published": "2011-02-08T09:21:10.000Z", "updated": "2011-02-08T09:21:10.000Z", "title": "1234-avoiding permutations and Dyck paths", "authors": [ "Marilena Barnabei", "Flavio Bonetti", "Matteo Silimbani" ], "comment": "16 pages, 8 figures", "categories": [ "math.CO" ], "abstract": "We define a map $\\nu$ between the symmetric group $S_n$ and the set of pairs of Dyck paths of semilength $n$. We show that the map $\\nu$ is injective when restricted to the set of 1234-avoiding permutations and characterize the image of this map.", "revisions": [ { "version": "v1", "updated": "2011-02-08T09:21:10.000Z" } ], "analyses": { "keywords": [ "dyck paths", "permutations", "symmetric group" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.1541B" } } }