{ "id": "1102.1217", "version": "v1", "published": "2011-02-07T00:38:34.000Z", "updated": "2011-02-07T00:38:34.000Z", "title": "Real-Variable Characterizations Of Hardy Spaces Associated With Bessel Operators", "authors": [ "Dachun Yang", "Dongyong Yang" ], "comment": "Anal. Appl. (Singap.) (to appear)", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $\\lambda>0$, $p\\in((2\\lz+1)/(2\\lz+2), 1]$, and $\\triangle_\\lambda\\equiv-\\frac{d^2}{dx^2}-\\frac{2\\lambda}{x} \\frac d{dx}$ be the Bessel operator. In this paper, the authors establish the characterizations of atomic Hardy spaces $H^p((0, \\infty), dm_\\lambda)$ associated with $\\triangle_\\lambda$ in terms of the radial maximal function, the nontangential maximal function, the grand maximal function, the Littlewood-Paley $g$-function and the Lusin-area function, where $dm_\\lambda(x)\\equiv x^{2\\lambda}\\,dx$. As an application, the authors further obtain the Riesz transform characterization of these Hardy spaces.", "revisions": [ { "version": "v1", "updated": "2011-02-07T00:38:34.000Z" } ], "analyses": { "subjects": [ "42B30", "42B25", "42B35" ], "keywords": [ "hardy spaces", "bessel operator", "real-variable characterizations", "grand maximal function", "nontangential maximal function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.1217Y" } } }