{ "id": "1102.0962", "version": "v3", "published": "2011-02-04T16:27:03.000Z", "updated": "2012-04-03T20:09:21.000Z", "title": "On the maximum number of five-cycles in a triangle-free graph", "authors": [ "Andrzej Grzesik" ], "comment": "After minor revisions; to appear in JCTB", "categories": [ "math.CO" ], "abstract": "Using Razborov's flag algebras we show that a triangle-free graph on n vertices contains at most (n/5)^5 cycles of length five. It settles in the affirmative a conjecture of Erdos.", "revisions": [ { "version": "v3", "updated": "2012-04-03T20:09:21.000Z" } ], "analyses": { "keywords": [ "triangle-free graph", "maximum number", "five-cycles", "razborovs flag algebras", "vertices contains" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.0962G" } } }