{ "id": "1102.0217", "version": "v4", "published": "2011-02-01T17:02:48.000Z", "updated": "2014-04-04T12:50:22.000Z", "title": "The Seneta--Heyde scaling for the branching random walk", "authors": [ "Elie Aidekon", "Zhan Shi" ], "comment": "Published in at http://dx.doi.org/10.1214/12-AOP809 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2014, Vol. 42, No. 3, 959-993", "doi": "10.1214/12-AOP809", "categories": [ "math.PR" ], "abstract": "We consider the boundary case (in the sense of Biggins and Kyprianou [Electron. J. Probab. 10 (2005) 609--631] in a one-dimensional super-critical branching random walk, and study the additive martingale $(W_n)$. We prove that, upon the system's survival, $n^{1/2}W_n$ converges in probability, but not almost surely, to a positive limit. The limit is identified as a constant multiple of the almost sure limit, discovered by Biggins and Kyprianou [Adv. in Appl. Probab. 36 (2004) 544--581], of the derivative martingale.", "revisions": [ { "version": "v4", "updated": "2014-04-04T12:50:22.000Z" } ], "analyses": { "keywords": [ "seneta-heyde scaling", "one-dimensional super-critical branching random walk", "sure limit", "boundary case", "systems survival" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.0217A" } } }