{ "id": "1102.0137", "version": "v1", "published": "2011-02-01T12:01:08.000Z", "updated": "2011-02-01T12:01:08.000Z", "title": "Commutators on $L_p$, $1\\le p<\\infty$", "authors": [ "Detelin Dosev", "William B. Johnson", "Gideon Schechtman" ], "categories": [ "math.FA" ], "abstract": "The operators on $\\LP=L_p[0,1]$, $1\\leq p<\\infty$, which are not commutators are those of the form $\\lambda I + S$ where $\\lambda\\neq 0$ and $S$ belongs to the largest ideal in $\\opLP$. The proof involves new structural results for operators on $\\LP$ which are of independent interest.", "revisions": [ { "version": "v1", "updated": "2011-02-01T12:01:08.000Z" } ], "analyses": { "subjects": [ "47B47", "46E30" ], "keywords": [ "commutators", "largest ideal", "structural results" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1102.0137D" } } }