{ "id": "1101.5425", "version": "v2", "published": "2011-01-28T01:43:16.000Z", "updated": "2011-03-14T22:41:58.000Z", "title": "A Lower Bound for the Size of a Sum of Dilates", "authors": [ "Zeljka Ljujic" ], "comment": "v2 Case $k=pq$ added", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $A$ be a subset of integers and let $2\\cdot A+k\\cdot A=\\{2a_1+ka_2 : a_1,a_2\\in A\\}$. Y. O. Hamidoune and J. Ru\\' e proved that if $k$ is an odd prime and $A$ a finite set of integers such that $|A|>8k^k$, then $|2\\cdot A+k\\cdot A|\\ge (k+2)|A|-k^2-k+2$. In this paper, we extend this result for the case when $k$ is a power of an odd prime and the case when $k$ is a product of two odd primes.", "revisions": [ { "version": "v2", "updated": "2011-03-14T22:41:58.000Z" } ], "analyses": { "keywords": [ "lower bound", "odd prime", "finite set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.5425L" } } }