{ "id": "1101.5146", "version": "v3", "published": "2011-01-26T20:26:27.000Z", "updated": "2012-02-04T18:17:06.000Z", "title": "Regularity for the optimal transportation problem with Euclidean distance squared cost on the embedded sphere", "authors": [ "Jun Kitagawa", "Micah Warren" ], "comment": "15 pages. Added gradient estimate depending on Wasserstein distance (see section 5)", "categories": [ "math.AP", "math.DG" ], "abstract": "We give sufficient conditions on initial and target measures supported on the sphere $\\S^n$ to ensure the solution to the optimal transport problem with the cost $|x-y|^2/2$ is a diffeomorphism.", "revisions": [ { "version": "v3", "updated": "2012-02-04T18:17:06.000Z" } ], "analyses": { "subjects": [ "49Q20", "35J96" ], "keywords": [ "euclidean distance squared cost", "optimal transportation problem", "embedded sphere", "regularity", "optimal transport problem" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }