{ "id": "1101.4557", "version": "v3", "published": "2011-01-24T14:58:40.000Z", "updated": "2012-05-05T05:44:24.000Z", "title": "On the counting function of sets with even partition functions", "authors": [ "Fethi Ben Said", "Jean-Louis Nicolas" ], "journal": "Publ. Math. Debrecen 79, 3-4 (2011) 687-697", "doi": "10.5486/PMD.2011.5106", "categories": [ "math.NT" ], "abstract": "Let q be an odd positive integer and P \\in F2[z] be of order q and such that P(0) = 1. We denote by A = A(P) the unique set of positive integers satisfying \\sum_{n=0}^\\infty p(A, n) z^n \\equiv P(z) (mod 2), where p(A,n) is the number of partitions of n with parts in A. In [5], it is proved that if A(P, x) is the counting function of the set A(P) then A(P, x) << x(log x)^{-r/\\phi(q)}, where r is the order of 2 modulo q and \\phi is Euler's function. In this paper, we improve on the constant c=c(q) for which A(P,x) << x(log x)^{-c}.", "revisions": [ { "version": "v3", "updated": "2012-05-05T05:44:24.000Z" } ], "analyses": { "keywords": [ "counting function", "partition functions", "eulers function", "unique set", "odd positive integer" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.4557B" } } }