{ "id": "1101.4454", "version": "v2", "published": "2011-01-24T06:55:39.000Z", "updated": "2013-06-12T01:10:38.000Z", "title": "Stein's method in high dimensions with applications", "authors": [ "Adrian Röllin" ], "comment": "22 pages, published version", "journal": "Ann. Inst. H. Poincare Probab. Statist. 49 (2013), 529-549", "categories": [ "math.PR" ], "abstract": "Let $h$ be a three times partially differentiable function on $R^n$, let $X=(X_1,\\dots,X_n)$ be a collection of real-valued random variables and let $Z=(Z_1,\\dots,Z_n)$ be a multivariate Gaussian vector. In this article, we develop Stein's method to give error bounds on the difference $E h(X) - E h(Z)$ in cases where the coordinates of $X$ are not necessarily independent, focusing on the high dimensional case $n\\to\\infty$. In order to express the dependency structure we use Stein couplings, which allows for a broad range of applications, such as classic occupancy, local dependence, Curie-Weiss model etc. We will also give applications to the Sherrington-Kirkpatrick model and last passage percolation on thin rectangles.", "revisions": [ { "version": "v2", "updated": "2013-06-12T01:10:38.000Z" } ], "analyses": { "keywords": [ "steins method", "high dimensions", "applications", "high dimensional case", "multivariate gaussian vector" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013AnIHP..49..529R" } } }