{ "id": "1101.4400", "version": "v1", "published": "2011-01-23T18:45:06.000Z", "updated": "2011-01-23T18:45:06.000Z", "title": "Another approach to parametric Bing and Krasinkiewicz maps", "authors": [ "Vesko Valov" ], "comment": "5 pages", "categories": [ "math.GN" ], "abstract": "Using a factorization theorem due to Pasynkov we provide a short proof of the existence and density of parametric Bing and Krasinkiewicz maps. In particular, the following corollary is established: Let $f\\colon X\\to Y$ be a surjective map between paracompact spaces such that all fibers $f^{-1}(y)$, $y\\in Y$, are compact and there exists a map $g\\colon X\\to\\mathbb I^{\\aleph_0}$ embedding each $f^{-1}(y)$ into $\\mathbb I^{\\aleph_0}$. Then for every $n\\geq 1$ the space $C^*(X,\\mathbb R^n)$ of all bounded continuous functions with the uniform convergence topology contains a dense set of maps $g$ such that any restriction $g|f^{-1}(y)$, $y\\in Y$, is a Bing and Krasinkiewicz map.", "revisions": [ { "version": "v1", "updated": "2011-01-23T18:45:06.000Z" } ], "analyses": { "subjects": [ "54E40", "54F15" ], "keywords": [ "krasinkiewicz map", "parametric bing", "uniform convergence topology contains", "factorization theorem", "short proof" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }