{ "id": "1101.4328", "version": "v2", "published": "2011-01-22T22:45:44.000Z", "updated": "2012-01-03T16:27:48.000Z", "title": "Absolutely Continuous Spectrum for Random Schroedinger Operators on the Bethe Strip", "authors": [ "Abel Klein", "Christian Sadel" ], "journal": "Mathematische Nachrichten 285, 5-26 (2012)", "doi": "10.1002/mana.201100019", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "The Bethe Strip of width $m$ is the cartesian product $\\B\\times\\{1,...,m\\}$, where $\\B$ is the Bethe lattice (Cayley tree). We prove that Anderson models on the Bethe strip have \"extended states\" for small disorder. More precisely, we consider Anderson-like Hamiltonians $\\;H_\\lambda=\\frac12 \\Delta \\otimes 1 + 1 \\otimes A + \\lambda \\Vv$ on a Bethe strip with connectivity $K \\geq 2$, where $A$ is an $m\\times m$ symmetric matrix, $\\Vv$ is a random matrix potential, and $\\lambda$ is the disorder parameter. Given any closed interval $I\\subset (-\\sqrt{K}+a_{\\mathrm{max}},\\sqrt{K}+a_{\\mathrm{min}})$, where $a_{\\mathrm{min}}$ and $a_{\\mathrm{max}}$ are the smallest and largest eigenvalues of the matrix $A$, we prove that for $\\lambda$ small the random Schr\\\"odinger operator $\\;H_\\lambda$ has purely absolutely continuous spectrum in $I$ with probability one and its integrated density of states is continuously differentiable on the interval $I$.", "revisions": [ { "version": "v2", "updated": "2012-01-03T16:27:48.000Z" } ], "analyses": { "subjects": [ "82B44", "47B80", "60H25" ], "keywords": [ "bethe strip", "absolutely continuous spectrum", "random schroedinger operators", "random matrix potential", "bethe lattice" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.4328K" } } }