{ "id": "1101.3915", "version": "v1", "published": "2011-01-20T14:36:11.000Z", "updated": "2011-01-20T14:36:11.000Z", "title": "A Lower Bound for the First Passage Time Density of the Suprathreshold Ornstein-Uhlenbeck Process", "authors": [ "Peter J. Thomas" ], "comment": "15 pages, 1 figure", "journal": "J. Appl. Probab. Volume 48, Number 2 (2011), 420-434", "doi": "10.1239/jap/1308662636", "categories": [ "math.PR", "q-bio.NC" ], "abstract": "We prove that the first passage time density $\\rho(t)$ for an Ornstein-Uhlenbeck process $X(t)$ obeying $dX=-\\beta X dt + \\sigma dW$ to reach a fixed threshold $\\theta$ from a suprathreshold initial condition $x_0>\\theta>0$ has a lower bound of the form $\\rho(t)>k \\exp\\left[-p e^{6\\beta t}\\right]$ for positive constants $k$ and $p$ for times $t$ exceeding some positive value $u$. We obtain explicit expressions for $k, p$ and $u$ in terms of $\\beta$, $\\sigma$, $x_0$ and $\\theta$, and discuss application of the results to the synchronization of periodically forced stochastic leaky integrate-and-fire model neurons.", "revisions": [ { "version": "v1", "updated": "2011-01-20T14:36:11.000Z" } ], "analyses": { "subjects": [ "60J70", "92C20" ], "keywords": [ "first passage time density", "suprathreshold ornstein-uhlenbeck process", "lower bound", "forced stochastic leaky integrate-and-fire", "stochastic leaky integrate-and-fire model neurons" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }