{ "id": "1101.3197", "version": "v3", "published": "2011-01-17T12:45:20.000Z", "updated": "2011-06-16T13:42:38.000Z", "title": "Large gaps between consecutive zeros, on the critical line, of the Riemann zeta-function", "authors": [ "Johan Bredberg" ], "comment": "Minor typos fixed. Also, now we first discuss our goal and then examine some needed integral-results. The actual maths is essentially unchanged", "categories": [ "math.NT" ], "abstract": "We show that for any sufficiently large $T,$ there exists a subinterval of $[T,2T]$ of length at least $2.766 \\times \\frac{2\\pi}{\\log{T}},$ in which the function $t \\mapsto \\zeta(1/2 + it)$ has no zeros.", "revisions": [ { "version": "v3", "updated": "2011-06-16T13:42:38.000Z" } ], "analyses": { "keywords": [ "riemann zeta-function", "large gaps", "consecutive zeros", "critical line" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.3197B" } } }