{ "id": "1101.2139", "version": "v1", "published": "2011-01-11T15:06:43.000Z", "updated": "2011-01-11T15:06:43.000Z", "title": "Anderson localization for random magnetic Laplacian on Z^2", "authors": [ "Laszlo Erdos", "David Hasler" ], "comment": "11 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider a two dimensional magnetic Schroedinger operator on a square lattice with a spatially stationary random magnetic field. We prove Anderson localization near the spectral edges. We use a new approach to establish a Wegner estimate that does not rely on the monotonicity of the energy on the random parameters.", "revisions": [ { "version": "v1", "updated": "2011-01-11T15:06:43.000Z" } ], "analyses": { "keywords": [ "random magnetic laplacian", "anderson localization", "dimensional magnetic schroedinger operator", "spatially stationary random magnetic field", "random parameters" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.2139E" } } }