{ "id": "1101.1750", "version": "v2", "published": "2011-01-10T09:46:36.000Z", "updated": "2018-01-02T12:36:25.000Z", "title": "On images of sofic systems", "authors": [ "Wolfgang Krieger" ], "comment": "21 pages", "categories": [ "math.DS" ], "abstract": "Let $\\Sigma$ and $\\bar\\Sigma$ be finite alphabets. For topologically transitive sofic systems $ X\\subset \\Sigma^{\\Bbb Z}$ and $\\widetilde X\\subset \\widetilde\\Sigma^{\\Bbb Z}$ we give a necessary and sufficient condition for the existence of a homomorphism from $X$ to $\\widetilde X$. For topologically mixing sofic systems $X \\subset \\Sigma^{\\Bbb Z}$ and $\\widetilde X\\subset \\widetilde\\Sigma^{\\Bbb Z}$, such that the topological entropy of $\\widetilde X$ is less than the topological entropy of $X$, we give a necessary and sufficient condition for the existence of a homomorphism of $X$ onto $\\widetilde X$.", "revisions": [ { "version": "v1", "updated": "2011-01-10T09:46:36.000Z", "abstract": "Let $\\Sigma$ and $\\bar\\Sigma$ be fnite alphabets. For a topologically transitive sofic system $ X\\subset \\Sigma^{\\Bbb Z}$ and a sofic system $\\bar X\\subset \\bar\\Sigma^{\\Bbb Z}$ we give a necessary and sufficient condition for the existence of a homomorphism from $X$ to $\\bar X$. For a topologically transitive sofic system $X \\subset \\Sigma^{\\Bbb Z}$ and a topologically transitive aperiodic sofic system $\\bar X\\subset \\bar\\Sigma^{\\Bbb Z}$ we give a necessary and sufficient condition for the existence of a homomophism of $X$ onto $\\bar X$.", "comment": "22 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2018-01-02T12:36:25.000Z" } ], "analyses": { "subjects": [ "37B10" ], "keywords": [ "topologically transitive sofic system", "sufficient condition", "topologically transitive aperiodic sofic system", "fnite alphabets" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.1750K" } } }