{ "id": "1101.1412", "version": "v2", "published": "2011-01-07T11:53:20.000Z", "updated": "2011-07-14T15:43:51.000Z", "title": "Homogeneous links, Seifert surfaces, digraphs and the reduced Alexander polynomial", "authors": [ "Jessica E. Banks" ], "comment": "37 pages, 28 figures; v2 Main results generalised from alternating links to homogeneous links. Title changed", "doi": "10.1007/s10711-012-9786-1", "categories": [ "math.GT" ], "abstract": "We give a geometric proof of the following result of Juhasz. \\emph{Let $a_g$ be the leading coefficient of the Alexander polynomial of an alternating knot $K$. If $|a_g|<4$ then $K$ has a unique minimal genus Seifert surface.} In doing so, we are able to generalise the result, replacing `minimal genus' with `incompressible' and `alternating' with `homogeneous'. We also examine the implications of our proof for alternating links in general.", "revisions": [ { "version": "v2", "updated": "2011-07-14T15:43:51.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27", "57M15" ], "keywords": [ "reduced alexander polynomial", "homogeneous links", "unique minimal genus seifert surface", "geometric proof" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.1412B" } } }