{ "id": "1101.1016", "version": "v2", "published": "2011-01-05T16:01:16.000Z", "updated": "2011-09-15T16:12:58.000Z", "title": "Gradient Estimate for Solutions to Poisson Equations in Metric Measure Spaces", "authors": [ "Renjin Jiang" ], "comment": "Journal of Functional Analysis, to appear", "categories": [ "math.AP" ], "abstract": "Let $(X,d)$ be a complete, pathwise connected metric measure space with locally Ahlfors $Q$-regular measure $\\mu$, where $Q>1$. Suppose that $(X,d,\\mu)$ supports a (local) $(1,2)$-Poincar\\'e inequality and a suitable curvature lower bound. For the Poisson equation $\\Delta u=f$ on $(X,d,\\mu)$, Moser-Trudinger and Sobolev inequalities are established for the gradient of $u$. The local H\\\"older continuity with optimal exponent of solutions is obtained.", "revisions": [ { "version": "v2", "updated": "2011-09-15T16:12:58.000Z" } ], "analyses": { "subjects": [ "31C25", "31C45", "35B33", "35B65" ], "keywords": [ "poisson equation", "gradient estimate", "suitable curvature lower bound", "pathwise connected metric measure space", "regular measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }