{ "id": "1101.0983", "version": "v2", "published": "2011-01-05T14:14:32.000Z", "updated": "2012-04-01T10:16:37.000Z", "title": "Proof of some conjectures of Z.-W. Sun on congruences for Apery polynomials", "authors": [ "Victor J. W. Guo", "Jiang Zeng" ], "comment": "11 pages, to appear in Journal of Number Theory", "journal": "J. Number Theory 132, 1731-1740 (2012)", "doi": "10.1016/j.jnt.2012.02.004", "categories": [ "math.NT", "math.CO" ], "abstract": "The Apery polynomials are defined by $A_n(x)=\\sum_{k=0}^{n}{n\\choose k}^2{n+k\\choose k}^2 x^k$ for all nonnegative integers $n$. We confirm several conjectures of Z.-W. Sun on the congruences for the sum $\\sum_{k=0}^{n-1}(-1)^k(2k+1) A_k(x)$ with $x\\in Z$.", "revisions": [ { "version": "v2", "updated": "2012-04-01T10:16:37.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "05A10", "05A19" ], "keywords": [ "apery polynomials", "congruences", "conjectures" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.0983G" } } }