{ "id": "1101.0580", "version": "v3", "published": "2011-01-03T19:15:35.000Z", "updated": "2013-05-23T12:13:31.000Z", "title": "Quantum cluster algebras of type A and the dual canonical basis", "authors": [ "Philipp Lampe" ], "comment": "48 pages", "doi": "10.1112/plms/pds098", "categories": [ "math.RT" ], "abstract": "The article concerns the subalgebra U_v^+(w) of the quantized universal enveloping algebra of the complex Lie algebra sl_{n+1} associated with a particular Weyl group element of length 2n. We verify that U_v^+(w) can be endowed with the structure of a quantum cluster algebra of type A_n. The quantum cluster algebra is a deformation of the ordinary cluster algebra Geiss-Leclerc-Schroeer attached to w using the representation theory of the preprojective algebra. Furthermore, we prove that the quantum cluster variables are, up to a power of v, elements in the dual of Lusztig's canonical basis under Kashiwara's bilinear form.", "revisions": [ { "version": "v3", "updated": "2013-05-23T12:13:31.000Z" } ], "analyses": { "subjects": [ "13F60", "17B37", "16G20" ], "keywords": [ "quantum cluster algebra", "dual canonical basis", "quantum cluster variables", "kashiwaras bilinear form", "ordinary cluster algebra geiss-leclerc-schroeer" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.0580L" } } }