{ "id": "1101.0516", "version": "v2", "published": "2011-01-03T13:10:18.000Z", "updated": "2012-02-02T02:49:55.000Z", "title": "A Gap Theorem for Self-shrinkers of the Mean Curvature Flow in Arbitrary Codimension", "authors": [ "Huai-Dong Cao", "Haizhong Li" ], "comment": "11 pages, minor corrections, accepted by Calc. Var. Partial Differential Equations", "categories": [ "math.DG" ], "abstract": "In this paper, we prove a classification theorem for self-shrinkers of the mean curvature flow with $|A|^2\\le 1$ in arbitrary codimension. In particular, this implies a gap theorem for self-shrinkers in arbitrary codimension.", "revisions": [ { "version": "v2", "updated": "2012-02-02T02:49:55.000Z" } ], "analyses": { "keywords": [ "mean curvature flow", "arbitrary codimension", "gap theorem", "self-shrinkers" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.0516C" } } }