{ "id": "1101.0472", "version": "v1", "published": "2011-01-03T08:52:53.000Z", "updated": "2011-01-03T08:52:53.000Z", "title": "Support varieties of $(\\frak g, \\frak k)$-modules of finite type", "authors": [ "Alexey V. Petukhov" ], "comment": "The notion of $(\\frak g, \\frak k)$-module have been introduced by I. Penkov, V. Serganova, G. Zuckerman. Main ingredients are Hilbert-Mumford Criterion, A. Beilinson- J. Bernstein localization theorem, O. Gabber theorem", "categories": [ "math.RT" ], "abstract": "Let $\\frak g$ be a reductive Lie algebra over an algebraically closed field of characteristic 0 and $\\frak k$ be a reductive in $\\frak g$-subalgebra. Let $M$ be a finitely generated (possibly, infinite-dimensional) $\\frak g$-module. We say that $M$ is a $(\\frak g, \\frak k)$-module if $M$ is a direct sum of a (possibly, infinite) amount of simple finite-dimensional $\\frak k$-modules. We say that $M$ is of finite type if $M$ is a $(\\frak g, \\frak k)$-module and Hom$_\\frak k(V, M)<\\infty$ for any simple $\\frak k$-module $V$. Let $X$ be a variety of all Borel subalgebras of $\\frak g$. Let $M$ be a finitely generated $(\\frak g, \\frak k)$-module of finite type. In this article we prove that $M$ is holonomic, i.e. $M$ is governed by some subvariety $L_M\\subset X$ and some local system $S_M$ on it. Furthermore we provide a finite list in which L$_M$ necessarily appear.", "revisions": [ { "version": "v1", "updated": "2011-01-03T08:52:53.000Z" } ], "analyses": { "keywords": [ "finite type", "support varieties", "local system", "borel subalgebras", "direct sum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }