{ "id": "1101.0418", "version": "v1", "published": "2011-01-02T17:32:40.000Z", "updated": "2011-01-02T17:32:40.000Z", "title": "Removable Sets for Hölder Continuous p(x)-Harmonic Functions", "authors": [ "A. Lyaghfouri" ], "categories": [ "math.AP" ], "abstract": "We establish that a closed set $E$ is removable for $C^{0,\\alpha}$ H\\\"{o}lder continuous $p(x)$-harmonic functions in a bounded open domain $\\Omega$ of $\\mathbb{R}^n$, $n\\geq 2$, provided that for each compact subset $K$ of $E$, the $(n-p_K+\\alpha(p_K-1))$-Hausdorff measure of $K$ is zero, where $p_K=\\max_{x\\in K} p(x)$.", "revisions": [ { "version": "v1", "updated": "2011-01-02T17:32:40.000Z" } ], "analyses": { "subjects": [ "35J60", "35J70" ], "keywords": [ "removable sets", "hölder continuous", "bounded open domain", "compact subset", "harmonic functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.0418L" } } }